FORMULATION OF HUMAN ANTIBODIES FOR TREATING TNF-ALPHA ASSOCIATED DISORDERS ## CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation of U.S. patent application Ser. No. 15/095,393, filed Apr. 11, 2016, which is a continuation of U.S. patent application Ser. No. 14/826,357, 10 filed Aug. 14, 2015, now U.S. Pat. No. 9,327,032, issued May 3, 2016, which is a continuation of U.S. patent application Ser. No. 14/558,182, filed Dec. 2, 2014, now U.S. Pat. No. 9,114,166, issued Aug. 25, 2015, which is a continuation of U.S. patent application Ser. No. 14/453,490, filed Aug. 6, 2014, now U.S. Pat. No. 8,916,158, issued Dec. 23, 2014, which is a continuation of U.S. patent application Ser. No. 14/322,581, filed Jul. 2, 2014, now U.S. Pat. No. 8,911,741, issued Dec. 16, 2014, which is continuation of U.S. patent application Ser. No. 14/091,938, filed Nov. 27, 2013, now 20 U.S. Pat. No. 8,795,670, issued Aug. 5, 2014, which is a continuation of U.S. patent application Ser. No. 13/471,820, filed May 15, 2012, now U.S. Pat. No. 8,932,591, issued Jan. 13, 2015, which is a continuation of U.S. patent application Ser. No. 10/525,292 filed Oct. 27, 2005, now U.S. Pat. No. 25 8,216,583, issued Jul. 10, 2012, which is a United States National Stage Application under 35 U.S.C. §371 of PCT/ IB2003/004502, filed Aug. 15, 2003 (now expired), which is a continuation of U.S. patent application Ser. No. 10/222, 140, filed Aug. 16, 2002 (now abandoned). Each of these 30 applications is herein incorporated by reference in its entirety. ## SEQUENCE LISTING The Sequence Listing associated with this application is provided in text format in lieu of a paper copy, and is hereby incorporated by reference into the specification. The name of the text file containing the Sequence Listing is 110222-0005-320-SL.txt. The text file is 11,490 bytes in size, was created 40 on Jan. 27, 2017, and is being submitted electronically via EFS Web. ## BACKGROUND OF THE INVENTION Tumor necrosis factor α (TNF α) is a cytokine produced by numerous cell types, including monocytes and macrophages, that was originally identified based on its capacity to induce the necrosis of certain mouse tumors (see e.g., Old, L. (1985) Science 230:630-632). Subsequently, a factor 50 termed cachectin, associated with cachexia, was shown to be the same molecule as TNF α . TNF α has been implicated in mediating shock (see e.g., Beutler, B. and Cerami, A. (1988) Annu. Rev. Biochem. 57:505-518; Beutler, B. and Cerami, A. (1989) Annu. Rev. Immunol. 7:625-655). Furthermore, 55 TNF α has been implicated in the pathophysiology of a variety of other human diseases and disorders, including sepsis, infections, autoimmune diseases, transplant rejection and graft-versus-host disease (see e.g., Moeller, A., et al. (1990) Cytokine 2:162-169; U.S. Pat. No. 5,231,024 to 60 Moeller et al.; European Patent Publication No. 260 610 B1 by Moeller, A., et al. Vasilli, P. (1992) Annu. Rev. Immunol. 10:411-452; Tracey, K. J. and Cerami, A. (1994) Annu. Rev. Med. 45:491-503). Because of the harmful role of human TNF α (hTNF α) in 65 a variety of human disorders, therapeutic strategies have been designed to inhibit or counteract hTNF α activity. In 2 particular, antibodies that bind to, and neutralize, hTNFa have been sought as a means to inhibit hTNFα activity. Some of the earliest of such antibodies were mouse monoclonal antibodies (mAbs), secreted by hybridomas prepared from lymphocytes of mice immunized with hTNFα (see e.g., Hahn T; et al., (1985) Proc Natl Acad Sci USA 82: 3814-3818; Liang, C-M., et al. (1986) Biochem. Biophys. Res. Commun. 137:847-854; Hirai, M., et al. (1987) J. Immunol. Methods 96:57-62; Fendly, B. M., et al. (1987) Hybridoma 6:359-370; Moeller, A., et al. (1990) Cytokine 2:162-169; U.S. Pat. No. 5,231,024 to Moeller et al.; European Patent Publication No. 186 833 B1 by Wallach, D.; European Patent Application Publication No. 218 868 A1 by Old et al.; European Patent Publication No. 260 610 B1 by Moeller, A., et al.). While these mouse anti-hTNF α antibodies often displayed high affinity for hTNFα (e.g., Kd≤10⁻⁹M) and were able to neutralize hTNFα activity, their use in vivo may be limited by problems associated with administration of mouse antibodies to humans, such as short serum half life, an inability to trigger certain human effector functions and elicitation of an unwanted immune response against the mouse antibody in a human (the "human antimouse antibody" (HAMA) reaction). In an attempt to overcome the problems associated with use of fully-murine antibodies in humans, murine antihTNFα antibodies have been genetically engineered to be more "human-like." For example, chimeric antibodies, in which the variable regions of the antibody chains are murine-derived and the constant regions of the antibody chains are human-derived, have been prepared (Knight, D. M, et al. (1993) Mol. Immunol. 30:1443-1453; PCT Publication No. WO 92/16553 by Daddona, P. E., et al.). Additionally, humanized antibodies, in which the hypervariable domains of the antibody variable regions are murine-derived but the remainder of the variable regions and the antibody constant regions are human-derived, have also been prepared (PCT Publication No. WO 92/11383 by Adair, J. R., et al.). However, because these chimeric and humanized antibodies still retain some murine sequences, they still may elicit an unwanted immune reaction, the human anti-chimeric antibody (HACA) reaction, especially when administered for prolonged periods, e.g., for chronic indications, such as rheumatoid arthritis (see e.g., Elliott, M. J., et al. (1994) Lancet 344:1125-1127; Elliot, M. J., et al. (1994) Lancet 344:1105-1110). A preferred hTNFα inhibitory agent to murine mAbs or derivatives thereof (e.g., chimeric or humanized antibodies) would be an entirely human anti-hTNF α antibody, since such an agent should not elicit the HAMA reaction, even if used for prolonged periods. Human monoclonal autoantibodies against hTNFα have been prepared using human hybridoma techniques (Boyle, P., et al. (1993) Cell. Immunol. 152:556-568; Boyle, P., et al. (1993) Cell. Immunol. 152:569-581; European Patent Application Publication No. 614 984 A2 by Boyle, et al.). However, these hybridomaderived monoclonal autoantibodies were reported to have an affinity for hTNFα that was too low to calculate by conventional methods, were unable to bind soluble hTNF α and were unable to neutralize hTNFα-induced cytotoxicity (see Boyle, et al.; supra). Moreover, the success of the human hybridoma technique depends upon the natural presence in human peripheral blood of lymphocytes producing autoantibodies specific for hTNFa. Certain studies have detected serum autoantibodies against hTNFα in human subjects (Fomsgaard, A., et al. (1989) Scand. J. Immunol. 30:219-223; Bendtzen, K., et al. (1990) Prog. Leukocyte Biol.